
Time Travel
Debugging

Greg Law Chris Croft-White

Most programmers
spend most of their

time debugging.

Everyone knows that debugging
is twice as hard as writing a
program in the first place.

So if you're as clever as you can
be when you write it, how will
you ever debug it?

Brian Kernighan

How do we debug?

Use dynamic checkers (e.g. valgrind, ASAN)

Use a debugger (e.g. IntelliJ, GDB)

Dynamic logging (e.g. LightRun)

logger.debug() printf()

How did that
happen?

Expectations

Reality

Use cases

Production*

CI/CD

“Inner loop” development

C++ projects and products

Linux
● Undo - UDB & LiveRecorder
● rr (rr-project.org)
● GDB (ish)

Windows
● TTD

Embedded
● Lauterbach “TRACE32”
● Green Hills TimeMachine

Non C++

● JavaScript / React replay.io

● .Net RevDebug
Visual Studio

● Java Undo

● Rust, Go Undo / rr

What happened?What was the previous state?
Two options:

1. Save it.
2. Recompute it.

a = a + 1 ✓

a = b ✗

Snapshots

 Maintain snapshots through history

 Resume from these - run forward as needed

 Copy-on-Write for performance & memory efficiency

 Adjust spacing to anticipate user’s needs

Event log

 Event Log captures non-deterministic state

 Stored in memory

 Efficient, diff-based representation

 Recorded during debug (or Live Recording)

 Replayed to reconstruct any point in history

 Saved to create a recording file for later use

Recording at process/OS ABI boundary

Kernel

Process 1 Process 2 Process 3

libc libm

Non-determinism

● What is unpredictable?
○ System calls.
○ Thread switches.
○ Asynchronous events (signals).
○ Shared memory accesses.
○ Some machine instructions.

Design decisions

● At what boundary to capture

● Binary rewriting instrumentation

● All/some/no memory accesses

● Separate record/replay phases

Undo rr WinDbg replay.io ODB

proc proc proc proc JVM

yes no yes no no

some none all* none all

yes/no yes yes yes yes

DEMO TIME!

